Evaluate the robustness of conservation tests across different sample sizes for null distribution generation.
Usage
diagnose_test_robustness(
test,
phyex_set,
sample_sizes = c(500, 1000, 5000, 10000),
plot_result = TRUE,
num_reps = 5,
...
)Arguments
- test
Function representing the conservation test to evaluate
- phyex_set
A PhyloExpressionSet object
- sample_sizes
Numeric vector of sample sizes to test (default: c(500, 1000, 5000, 10000))
- plot_result
Logical indicating whether to plot results (default: TRUE)
- num_reps
Number of replicates for each sample size (default: 5)
- ...
Additional arguments passed to the test function
Details
This function assesses how consistent test results are across different sample sizes for null distribution generation, helping to determine appropriate sample sizes for reliable testing.
Examples
# Diagnose flatline test robustness
robustness <- diagnose_test_robustness(stat_flatline_test,
example_phyex_set,
sample_sizes=c(10,20),
plot_result=FALSE,
num_reps=3)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
