This functions computes the distance/dissimilarity between two probability density functions.
distance(
x,
method = "euclidean",
p = NULL,
test.na = TRUE,
unit = "log",
epsilon = 1e-05,
est.prob = NULL,
use.row.names = FALSE,
as.dist.obj = FALSE,
diag = FALSE,
upper = FALSE,
mute.message = FALSE
)
a numeric data.frame
or matrix
(storing probability vectors) or a numeric data.frame
or matrix
storing counts (if est.prob
is specified).
a character string indicating whether the distance measure that should be computed.
power of the Minkowski distance.
a boolean value indicating whether input vectors should be tested for NA
values. Faster computations if test.na = FALSE
.
a character string specifying the logarithm unit that should be used to compute distances that depend on log computations.
a small value to address cases in the distance computation where division by zero occurs. In
these cases, x / 0 or 0 / 0 will be replaced by epsilon
. The default is epsilon = 0.00001
.
However, we recommend to choose a custom epsilon
value depending on the size of the input vectors,
the expected similarity between compared probability density functions and
whether or not many 0 values are present within the compared vectors.
As a rough rule of thumb we suggest that when dealing with very large
input vectors which are very similar and contain many 0
values,
the epsilon
value should be set even smaller (e.g. epsilon = 0.000000001
),
whereas when vector sizes are small or distributions very divergent then
higher epsilon
values may also be appropriate (e.g. epsilon = 0.01
).
Addressing this epsilon
issue is important to avoid cases where distance metrics
return negative values which are not defined and only occur due to the
technical issues of computing x / 0 or 0 / 0 cases.
method to estimate probabilities from input count vectors such as non-probability vectors. Default: est.prob = NULL
. Options are:
est.prob = "empirical"
: The relative frequencies of each vector are computed internally. For example an input matrix rbind(1:10, 11:20)
will be transformed to a probability vector rbind(1:10 / sum(1:10), 11:20 / sum(11:20))
a logical value indicating whether or not row names from
the input matrix shall be used as rownames and colnames of the output distance matrix. Default value is use.row.names = FALSE
.
shall the return value or matrix be an object of class link[stats]{dist}
? Default is as.dist.obj = FALSE
.
if as.dist.obj = TRUE
, then this value indicates whether the diagonal of the distance matrix should be printed. Default
if as.dist.obj = TRUE
, then this value indicates whether the upper triangle of the distance matrix should be printed.
a logical value indicating whether or not messages printed by distance
shall be muted. Default is mute.message = FALSE
.
The following results are returned depending on the dimension of x
:
in case nrow(x)
= 2 : a single distance value.
in case nrow(x)
> 2 : a distance matrix
storing distance values for all pairwise probability vector comparisons.
Here a distance is defined as a quantitative degree of how far two mathematical objects are apart from eachother (Cha, 2007).
This function implements the following distance/similarity measures to quantify the distance between probability density functions:
L_p Minkowski family
Euclidean : \(d = sqrt( \sum | P_i - Q_i |^2)\)
Manhattan : \(d = \sum | P_i - Q_i |\)
Minkowski : \(d = ( \sum | P_i - Q_i |^p)^1/p\)
Chebyshev : \(d = max | P_i - Q_i |\)
L_1 family
Sorensen : \(d = \sum | P_i - Q_i | / \sum (P_i + Q_i)\)
Gower : \(d = 1/d * \sum | P_i - Q_i |\)
Soergel : \(d = \sum | P_i - Q_i | / \sum max(P_i , Q_i)\)
Kulczynski d : \(d = \sum | P_i - Q_i | / \sum min(P_i , Q_i)\)
Canberra : \(d = \sum | P_i - Q_i | / (P_i + Q_i)\)
Lorentzian : \(d = \sum ln(1 + | P_i - Q_i |)\)
Intersection family
Intersection : \(s = \sum min(P_i , Q_i)\)
Non-Intersection : \(d = 1 - \sum min(P_i , Q_i)\)
Wave Hedges : \(d = \sum | P_i - Q_i | / max(P_i , Q_i)\)
Czekanowski : \(d = \sum | P_i - Q_i | / \sum | P_i + Q_i |\)
Motyka : \(d = \sum min(P_i , Q_i) / (P_i + Q_i)\)
Kulczynski s : \(d = 1 / \sum | P_i - Q_i | / \sum min(P_i , Q_i)\)
Tanimoto : \(d = \sum (max(P_i , Q_i) - min(P_i , Q_i)) / \sum max(P_i , Q_i)\) ; equivalent to Soergel
Ruzicka : \(s = \sum min(P_i , Q_i) / \sum max(P_i , Q_i)\) ; equivalent to 1 - Tanimoto = 1 - Soergel
Inner Product family
Inner Product : \(s = \sum P_i * Q_i\)
Harmonic mean : \(s = 2 * \sum (P_i * Q_i) / (P_i + Q_i)\)
Cosine : \(s = \sum (P_i * Q_i) / sqrt(\sum P_i^2) * sqrt(\sum Q_i^2)\)
Kumar-Hassebrook (PCE) : \(s = \sum (P_i * Q_i) / (\sum P_i^2 + \sum Q_i^2 - \sum (P_i * Q_i))\)
Jaccard : \(d = 1 - \sum (P_i * Q_i) / (\sum P_i^2 + \sum Q_i^2 - \sum (P_i * Q_i))\) ; equivalent to 1 - Kumar-Hassebrook
Dice : \(d = \sum (P_i - Q_i)^2 / (\sum P_i^2 + \sum Q_i^2)\)
Squared-chord family
Fidelity : \(s = \sum sqrt(P_i * Q_i)\)
Bhattacharyya : \(d = - ln \sum sqrt(P_i * Q_i)\)
Hellinger : \(d = 2 * sqrt( 1 - \sum sqrt(P_i * Q_i))\)
Matusita : \(d = sqrt( 2 - 2 * \sum sqrt(P_i * Q_i))\)
Squared-chord : \(d = \sum ( sqrt(P_i) - sqrt(Q_i) )^2\)
Squared L_2 family (\(X\)^2 squared family)
Squared Euclidean : \(d = \sum ( P_i - Q_i )^2\)
Pearson \(X\)^2 : \(d = \sum ( (P_i - Q_i )^2 / Q_i )\)
Neyman \(X\)^2 : \(d = \sum ( (P_i - Q_i )^2 / P_i )\)
Squared \(X\)^2 : \(d = \sum ( (P_i - Q_i )^2 / (P_i + Q_i) )\)
Probabilistic Symmetric \(X\)^2 : \(d = 2 * \sum ( (P_i - Q_i )^2 / (P_i + Q_i) )\)
Divergence : \(X\)^2 : \(d = 2 * \sum ( (P_i - Q_i )^2 / (P_i + Q_i)^2 )\)
Clark : \(d = sqrt ( \sum (| P_i - Q_i | / (P_i + Q_i))^2 )\)
Additive Symmetric \(X\)^2 : \(d = \sum ( ((P_i - Q_i)^2 * (P_i + Q_i)) / (P_i * Q_i) ) \)
Shannon's entropy family
Kullback-Leibler : \(d = \sum P_i * log(P_i / Q_i)\)
Jeffreys : \(d = \sum (P_i - Q_i) * log(P_i / Q_i)\)
K divergence : \(d = \sum P_i * log(2 * P_i / P_i + Q_i)\)
Topsoe : \(d = \sum ( P_i * log(2 * P_i / P_i + Q_i) ) + ( Q_i * log(2 * Q_i / P_i + Q_i) )\)
Jensen-Shannon : \(d = 0.5 * ( \sum P_i * log(2 * P_i / P_i + Q_i) + \sum Q_i * log(2 * Q_i / P_i + Q_i))\)
Jensen difference : \(d = \sum ( (P_i * log(P_i) + Q_i * log(Q_i) / 2) - (P_i + Q_i / 2) * log(P_i + Q_i / 2) )\)
Combinations
Taneja : \(d = \sum ( P_i + Q_i / 2) * log( P_i + Q_i / ( 2 * sqrt( P_i * Q_i)) )\)
Kumar-Johnson : \(d = \sum (P_i^2 - Q_i^2)^2 / 2 * (P_i * Q_i)^1.5\)
Avg(L_1, L_n) : \(d = \sum | P_i - Q_i| + max{ | P_i - Q_i |} / 2\)
In cases where x
specifies a count matrix, the argument est.prob
can be selected to first estimate probability vectors
from input count vectors and second compute the corresponding distance measure based on the estimated probability vectors.
The following probability estimation methods are implemented in this function:
est.prob = "empirical"
: relative frequencies of counts.
According to the reference in some distance measure computations invalid computations can occur when dealing with 0 probabilities.
In these cases the convention is treated as follows:
division by zero - case 0/0
: when the divisor and dividend become zero, 0/0
is treated as 0
.
division by zero - case n/0
: when only the divisor becomes 0
, the corresponsning 0
is replaced by a small \(\epsilon = 0.00001\).
log of zero - case 0 * log(0)
: is treated as 0
.
log of zero - case log(0)
: zero is replaced by a small \(\epsilon = 0.00001\).
Sung-Hyuk Cha. (2007). Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International Journal of Mathematical Models and Methods in Applied Sciences 4: 1.
# Simple Examples
# receive a list of implemented probability distance measures
getDistMethods()
#> [1] "euclidean" "manhattan" "minkowski"
#> [4] "chebyshev" "sorensen" "gower"
#> [7] "soergel" "kulczynski_d" "canberra"
#> [10] "lorentzian" "intersection" "non-intersection"
#> [13] "wavehedges" "czekanowski" "motyka"
#> [16] "kulczynski_s" "tanimoto" "ruzicka"
#> [19] "inner_product" "harmonic_mean" "cosine"
#> [22] "hassebrook" "jaccard" "dice"
#> [25] "fidelity" "bhattacharyya" "hellinger"
#> [28] "matusita" "squared_chord" "squared_euclidean"
#> [31] "pearson" "neyman" "squared_chi"
#> [34] "prob_symm" "divergence" "clark"
#> [37] "additive_symm" "kullback-leibler" "jeffreys"
#> [40] "k_divergence" "topsoe" "jensen-shannon"
#> [43] "jensen_difference" "taneja" "kumar-johnson"
#> [46] "avg"
## compute the euclidean distance between two probability vectors
distance(rbind(1:10/sum(1:10), 20:29/sum(20:29)), method = "euclidean")
#> Metric: 'euclidean'; comparing: 2 vectors.
#> euclidean
#> 0.1280713
## compute the euclidean distance between all pairwise comparisons of probability vectors
ProbMatrix <- rbind(1:10/sum(1:10), 20:29/sum(20:29),30:39/sum(30:39))
distance(ProbMatrix, method = "euclidean")
#> Metric: 'euclidean'; comparing: 3 vectors.
#> v1 v2 v3
#> v1 0.0000000 0.12807130 0.13881717
#> v2 0.1280713 0.00000000 0.01074588
#> v3 0.1388172 0.01074588 0.00000000
# compute distance matrix without testing for NA values in the input matrix
distance(ProbMatrix, method = "euclidean", test.na = FALSE)
#> Metric: 'euclidean'; comparing: 3 vectors.
#> v1 v2 v3
#> v1 0.0000000 0.12807130 0.13881717
#> v2 0.1280713 0.00000000 0.01074588
#> v3 0.1388172 0.01074588 0.00000000
# alternatively use the colnames of the input data for the rownames and colnames
# of the output distance matrix
ProbMatrix <- rbind(1:10/sum(1:10), 20:29/sum(20:29),30:39/sum(30:39))
rownames(ProbMatrix) <- paste0("Example", 1:3)
distance(ProbMatrix, method = "euclidean", use.row.names = TRUE)
#> Metric: 'euclidean'; comparing: 3 vectors.
#> Example1 Example2 Example3
#> Example1 0.0000000 0.12807130 0.13881717
#> Example2 0.1280713 0.00000000 0.01074588
#> Example3 0.1388172 0.01074588 0.00000000
# Specialized Examples
CountMatrix <- rbind(1:10, 20:29, 30:39)
## estimate probabilities from a count matrix
distance(CountMatrix, method = "euclidean", est.prob = "empirical")
#> Metric: 'euclidean'; comparing: 3 vectors.
#> v1 v2 v3
#> v1 0.0000000 0.12807130 0.13881717
#> v2 0.1280713 0.00000000 0.01074588
#> v3 0.1388172 0.01074588 0.00000000
## compute the euclidean distance for count data
## NOTE: some distance measures are only defined for probability values,
distance(CountMatrix, method = "euclidean")
#> Metric: 'euclidean'; comparing: 3 vectors.
#> v1 v2 v3
#> v1 0.00000 60.08328 91.70605
#> v2 60.08328 0.00000 31.62278
#> v3 91.70605 31.62278 0.00000
## compute the Kullback-Leibler Divergence with different logarithm bases:
### case: unit = log (Default)
distance(ProbMatrix, method = "kullback-leibler", unit = "log")
#> Metric: 'kullback-leibler' using unit: 'log'; comparing: 3 vectors.
#> v1 v2 v3
#> v1 0.00000000 0.0965296706 0.1111323599
#> v2 0.09652967 0.0000000000 0.0005867893
#> v3 0.11113236 0.0005867893 0.0000000000
### case: unit = log2
distance(ProbMatrix, method = "kullback-leibler", unit = "log2")
#> Metric: 'kullback-leibler' using unit: 'log2'; comparing: 3 vectors.
#> v1 v2 v3
#> v1 0.0000000 0.1392628771 0.1603301045
#> v2 0.1392629 0.0000000000 0.0008465581
#> v3 0.1603301 0.0008465581 0.0000000000
### case: unit = log10
distance(ProbMatrix, method = "kullback-leibler", unit = "log10")
#> Metric: 'kullback-leibler' using unit: 'log10'; comparing: 3 vectors.
#> v1 v2 v3
#> v1 0.00000000 0.0419223033 0.0482641707
#> v2 0.04192230 0.0000000000 0.0002548394
#> v3 0.04826417 0.0002548394 0.0000000000