Skip to contents

This function simply visualizes the gene expression profiles of a defined subset of genes stored in the input ExpressionSet. The maximum nummber of genes to visualize at once is 25.

Usage

plot_gene_set(
  ExpressionSet,
  gene_set,
  get_subset = FALSE,
  use_only_map = FALSE,
  colors = NULL,
  plot_legend = TRUE,
  y_ticks = 6,
  digits_ylab = 1,
  line_width = 1,
  point_size = 2,
  add_expression_values = FALSE,
  n_genes_for_distance = 1,
  ...
)

Arguments

ExpressionSet

a standard PhyloExpressionSet or DivergenceExpressionSet object.

gene_set

a character vector storing the gene ids for which gene expression profiles shall be visualized.

get_subset

a logical value indicating whether or not an ExpressionSet subset of the selected gene_set should be retuned.

use_only_map

a logical value indicating whether instead of a standard ExpressionSet only a Phylostratigraphic Map or Divergene Map is passed to the function.

colors

colors for gene expression profiles. Default: colors = NULL, hence default colours are used.

plot_legend

a logical value indicating whether gene ids should be printed as legend next to the plot.

y_ticks

a numeric value specifying the number of ticks to be drawn on the y-axis.

digits_ylab

a numeric value specifying the number of digits shown for the expression levels on the y-axis.

add_expression_values

a logical value indicating whether expression values should be displayed on the plot.

n_genes_for_distance

a numeric value specifying the number of top genes to be selected based on the highest distance sum.

...

additional parameters passed to matplot.

Details

This function simply visualizes or subsets the gene expression levels of a set of genes that are stored in the input ExpressionSet.

Author

Hajk-Georg Drost and Filipa Martins Costa

Examples

data(PhyloExpressionSetExample)

# the best parameter setting to visualize this plot:
# png("test_png.png",700,400)
PlotGeneSet(ExpressionSet = PhyloExpressionSetExample, 
            gene_set      = PhyloExpressionSetExample[1:5, 2], 
            lty           = 1, 
            lwd           = 4,
            xlab          = "Ontogeny",
            ylab          = "Expression Level")
#> Error in PlotGeneSet(ExpressionSet = PhyloExpressionSetExample, gene_set = PhyloExpressionSetExample[1:5,     2], lty = 1, lwd = 4, xlab = "Ontogeny", ylab = "Expression Level"): could not find function "PlotGeneSet"

# dev.off()

# In case you would like to work with the expression levels
# of selected genes you can specify the 'get_subset' argument:

plot_gene_set(ExpressionSet = PhyloExpressionSetExample, 
            gene_set      = PhyloExpressionSetExample[1:5, 2], 
            get_subset    = TRUE)
#> # A tibble: 5 × 5
#>   Phylostratum GeneID      Stage    Expression distance_sum
#>          <int> <fct>       <fct>         <dbl>        <dbl>
#> 1            1 at1g01040.2 Zygote        2174.      243600.
#> 2            1 at1g01050.1 Quadrant      1817.      237017.
#> 3            1 at1g01070.1 Torpedo        864.      238465.
#> 4            1 at1g01080.2 Mature         861.      238563.
#> 5            1 at1g01090.1 Bent         66980.     2075607.
#> Scale for y is already present.
#> Adding another scale for y, which will replace the existing scale.

#>   Phylostratum      GeneID    Zygote   Quadrant  Globular      Heart   Torpedo
#> 1            1 at1g01040.2  2173.635  1911.2001  1152.555  1291.4224  1000.253
#> 2            1 at1g01050.1  1501.014  1817.3086  1665.309  1564.7612  1496.321
#> 3            1 at1g01070.1  1212.793  1233.0023   939.200   929.6195   864.218
#> 4            1 at1g01080.2  1016.920   936.3837  1181.338  1329.4734  1392.643
#> 5            1 at1g01090.1 11424.567 16778.1685 34366.649 39775.6405 56231.569
#>         Bent    Mature
#> 1   962.9772 1696.4274
#> 2  1114.6435 1071.6555
#> 3   877.2060  894.8189
#> 4  1287.9746  861.2605
#> 5 66980.3673 7772.5617


# get a gene subset using only a phylostratihraphic map
ExamplePSMap <- PhyloExpressionSetExample[ , 1:2]

plot_gene_set(ExpressionSet = ExamplePSMap, 
            gene_set      = PhyloExpressionSetExample[1:5, 2], 
            get_subset    = TRUE,
            use_only_map  = TRUE)
#> Error: measure variables not found in data: NA
            
# In case you want the expression values to appear for the 2 genes with a most differentiated profile
plot_gene_set(ExpressionSet = PhyloExpressionSetExample, 
            gene_set      = PhyloExpressionSetExample[1:5, 2], 
            add_expression_values =T,
            n_genes_for_distance = 2
            )
#> # A tibble: 5 × 5
#>   Phylostratum GeneID      Stage    Expression distance_sum
#>          <int> <fct>       <fct>         <dbl>        <dbl>
#> 1            1 at1g01040.2 Zygote        2174.      243600.
#> 2            1 at1g01050.1 Quadrant      1817.      237017.
#> 3            1 at1g01070.1 Torpedo        864.      238465.
#> 4            1 at1g01080.2 Mature         861.      238563.
#> 5            1 at1g01090.1 Bent         66980.     2075607.
#> Scale for y is already present.
#> Adding another scale for y, which will replace the existing scale.