Skip to contents

This function performs the split-apply-combine methodology on Phylostrata or Divergence Strata stored within the input ExpressionSet.

This function is very useful to perform any phylostratum or divergence-stratum specific analysis.

Usage

age.apply(ExpressionSet, FUN, ..., as.list = FALSE)

Arguments

ExpressionSet

a standard PhyloExpressionSet or DivergenceExpressionSet object.

FUN

a function to be performed on the corresponding expression matrix of each phylostratum or divergence-stratum.

...

additional arguments of FUN.

as.list

a boolean value specifying whether the output format shall be a matrix or a list object.

Value

Either a numeric matrix storing the return values of the applied function for each age class or a numeric list storing the return values of the applied function for each age class in a list.

Details

This function uses the split function to subset the expression matrix into phylostratum specific sub-matrices. Internally using lapply, any function can be performed to the sub-matrices. The return value of this function is a numeric matrix storing the return values by FUN for each phylostratum and each developmental stage s. Note that the input FUN must be an function that can be applied to a matrix (e.g., colMeans or RE). In case you use an anonymous function you could use function(x) apply(x , 2 , var) as an example to compute the variance of each phylostratum and each developmental stage s.

See also

Author

Hajk-Georg Drost

Examples

 
 # source the example dataset
 data(PhyloExpressionSetExample)
 
# Example 1
# get the relative expression profiles for each phylostratum
age.apply(PhyloExpressionSetExample, RE)
#>       Zygote  Quadrant   Globular      Heart    Torpedo       Bent    Mature
#> 1  0.4816246 0.3145330 0.46389184 0.00000000 0.17067495 0.56880234 1.0000000
#> 2  1.0000000 0.9363209 0.63348381 0.40823711 0.14904726 0.00000000 0.2206063
#> 3  0.6083424 0.4109402 0.00000000 0.09521758 0.16284114 0.21213845 1.0000000
#> 4  0.2985050 0.2366309 0.04946941 0.07499453 0.00000000 0.20573325 1.0000000
#> 5  0.2893657 0.2799777 0.00000000 0.01401191 0.01365328 0.45908792 1.0000000
#> 6  0.2323316 0.2786335 0.02706119 0.00000000 0.03592044 0.20084761 1.0000000
#> 7  0.5666979 0.2620602 0.00000000 0.12099252 0.07133814 0.13232551 1.0000000
#> 8  0.4203039 0.3092784 0.09237036 0.05442042 0.00000000 0.45520558 1.0000000
#> 9  0.4586261 0.4668613 0.39738003 0.23205534 0.00000000 0.37067096 1.0000000
#> 10 0.8811321 1.0000000 0.53841500 0.22974016 0.00000000 0.30490542 0.4881046
#> 11 0.4015809 0.4877111 0.04846721 0.05741594 0.00000000 0.07716367 1.0000000
#> 12 0.5052572 0.3359211 0.07100055 0.09489782 0.00000000 0.25811214 1.0000000

# this is analogous to 
REMatrix(PhyloExpressionSetExample)
#>       Zygote  Quadrant   Globular      Heart    Torpedo       Bent    Mature
#> 1  0.4816246 0.3145330 0.46389184 0.00000000 0.17067495 0.56880234 1.0000000
#> 2  1.0000000 0.9363209 0.63348381 0.40823711 0.14904726 0.00000000 0.2206063
#> 3  0.6083424 0.4109402 0.00000000 0.09521758 0.16284114 0.21213845 1.0000000
#> 4  0.2985050 0.2366309 0.04946941 0.07499453 0.00000000 0.20573325 1.0000000
#> 5  0.2893657 0.2799777 0.00000000 0.01401191 0.01365328 0.45908792 1.0000000
#> 6  0.2323316 0.2786335 0.02706119 0.00000000 0.03592044 0.20084761 1.0000000
#> 7  0.5666979 0.2620602 0.00000000 0.12099252 0.07133814 0.13232551 1.0000000
#> 8  0.4203039 0.3092784 0.09237036 0.05442042 0.00000000 0.45520558 1.0000000
#> 9  0.4586261 0.4668613 0.39738003 0.23205534 0.00000000 0.37067096 1.0000000
#> 10 0.8811321 1.0000000 0.53841500 0.22974016 0.00000000 0.30490542 0.4881046
#> 11 0.4015809 0.4877111 0.04846721 0.05741594 0.00000000 0.07716367 1.0000000
#> 12 0.5052572 0.3359211 0.07100055 0.09489782 0.00000000 0.25811214 1.0000000
# Example 2
# compute the mean expression profiles for each phylostratum
age.apply(PhyloExpressionSetExample, colMeans)
#>      Zygote Quadrant Globular    Heart  Torpedo     Bent   Mature
#> 1  2607.882 2579.372 2604.856 2525.704 2554.825 2622.757 2696.331
#> 2  2597.258 2574.745 2467.679 2388.045 2296.410 2243.716 2321.709
#> 3  2528.272 2363.159 2019.436 2099.079 2155.642 2196.875 2855.866
#> 4  1925.320 1887.078 1771.399 1787.175 1740.823 1867.981 2358.893
#> 5  2378.883 2368.593 2061.729 2077.087 2076.693 2564.904 3157.761
#> 6  1658.253 1697.242 1485.401 1462.613 1492.861 1631.741 2304.683
#> 7  1993.321 1717.659 1480.525 1590.009 1545.078 1600.264 2385.409
#> 8  1781.653 1670.106 1452.180 1414.052 1359.376 1816.718 2364.070
#> 9  1758.119 1764.748 1708.815 1575.727 1388.920 1687.314 2193.930
#> 10 2414.456 2501.390 2163.810 1938.060 1770.039 1993.032 2127.015
#> 11 1999.163 2071.456 1702.779 1710.290 1662.099 1726.865 2501.443
#> 12 2126.189 2036.804 1896.964 1909.578 1859.485 1995.732 2387.343

# Example 3
# compute the variance profiles for each phylostratum
age.apply(PhyloExpressionSetExample, function(x) apply(x , 2 , var))
#>      Zygote Quadrant Globular    Heart  Torpedo     Bent   Mature
#> 1  46858320 44033012 44106145 38877224 37548528 39453762 48129006
#> 2  46867279 42686867 36090002 32587501 29232620 28376678 30460806
#> 3  41783430 37194145 17928194 20312145 21038520 24918360 57471592
#> 4  19261723 17160926 13850827 14557261 13350847 19932521 42637133
#> 5  32592884 31153055 21527988 22233611 23096264 45694558 78388518
#> 6  12118906 13540947  8706851  8870013 10758437 17580299 58334320
#> 7  30355579 18174987  7117039 10899294 12633952 15875758 55103241
#> 8  13397069 11015110  6730029  5014969  3743414 27906852 52729250
#> 9  11342446 12741601 14947365  8479977  4709920 22850095 41873875
#> 10 47788107 50703428 35831030 30053404 22091444 35323704 36885550
#> 11 24104869 30970830 12777528 14043089 16961809 24200949 56830372
#> 12 30642509 27840568 23658038 23072584 22502870 29014330 49513851

# Example 4
# compute the range for each phylostratum
# Note: in this case, the range() function returns 2 values for each phylostratum
# and each developmental stage, hence one should use the argument 'as.list = TRUE'
# to make sure that the results are returned properly 
age.apply(PhyloExpressionSetExample, function(x) apply(x , 2 , range), as.list = TRUE)
#> $`1`
#>         Zygote   Quadrant   Globular      Heart    Torpedo       Bent
#> [1,]   585.206   554.8961   548.0507   568.1412   540.0542   535.9804
#> [2,] 71936.292 68151.2904 72995.7957 67833.2550 64942.5576 69482.5093
#>          Mature
#> [1,]   532.3402
#> [2,] 77475.7206
#> 
#> $`2`
#>          Zygote   Quadrant   Globular      Heart    Torpedo       Bent
#> [1,]   580.6445   574.6997   560.7247   547.7568   557.0626   530.3735
#> [2,] 73999.5109 66168.5626 68717.7230 64428.0043 64437.4151 68692.2235
#>          Mature
#> [1,]   562.4309
#> [2,] 67137.1151
#> 
#> $`3`
#>          Zygote   Quadrant   Globular      Heart    Torpedo       Bent
#> [1,]   623.1659   589.5403   580.2586   588.6726   566.7765   558.5507
#> [2,] 68451.1737 67297.4233 60605.4226 61712.1844 54853.5566 55114.0385
#>          Mature
#> [1,]   596.9872
#> [2,] 67058.7800
#> 
#> $`4`
#>          Zygote   Quadrant   Globular      Heart    Torpedo       Bent
#> [1,]   589.5377   574.8131   560.7161   559.2638   569.3281   553.8426
#> [2,] 64147.2534 63952.2243 57847.7659 61816.6287 48750.3696 60011.1444
#>          Mature
#> [1,]   572.2069
#> [2,] 75420.3483
#> 
#> $`5`
#>         Zygote   Quadrant   Globular      Heart    Torpedo       Bent    Mature
#> [1,]   571.478   572.2143   597.7567   588.9979   567.5319   571.7144   564.607
#> [2,] 66824.532 55393.2659 54161.7005 56953.2335 56346.4812 61459.7431 81105.580
#> 
#> $`6`
#>          Zygote   Quadrant  Globular      Heart   Torpedo      Bent     Mature
#> [1,]   589.0266   576.3678   568.514   575.5234   567.864   554.431   569.6375
#> [2,] 61492.5176 58588.9023 54426.657 53748.3906 57102.640 61177.576 81496.1486
#> 
#> $`7`
#>          Zygote   Quadrant   Globular     Heart    Torpedo       Bent
#> [1,]   605.8876   581.1317   592.6554   591.897   560.0847   563.6024
#> [2,] 62256.6328 56018.9987 25729.4257 34192.828 44443.2861 50930.9745
#>          Mature
#> [1,]   561.2506
#> [2,] 71635.6409
#> 
#> $`8`
#>          Zygote   Quadrant   Globular      Heart    Torpedo       Bent
#> [1,]   637.9878   569.1286   584.7325   605.0823   594.4442   600.2223
#> [2,] 41138.0802 40931.4758 33941.3019 29157.0095 23359.8204 68783.3661
#>          Mature
#> [1,]   556.4985
#> [2,] 68490.5460
#> 
#> $`9`
#>          Zygote   Quadrant   Globular      Heart  Torpedo       Bent     Mature
#> [1,]   641.0205   616.7897   581.1254   581.5667   586.88   591.8835   579.5047
#> [2,] 33543.3348 34506.4575 48067.4038 31816.1675 21583.04 65310.1500 67092.0569
#> 
#> $`10`
#>          Zygote   Quadrant   Globular      Heart   Torpedo       Bent
#> [1,]   615.9278   592.7529   574.7775   575.9234   572.552   578.3298
#> [2,] 66638.5047 62675.8417 67192.4804 64719.1091 60300.004 66748.8375
#>          Mature
#> [1,]   582.9723
#> [2,] 67226.2424
#> 
#> $`11`
#>          Zygote   Quadrant   Globular      Heart    Torpedo       Bent
#> [1,]   619.2366   592.5207   597.7823   591.3239   566.7128   583.1649
#> [2,] 47624.9229 57584.7661 35765.6619 28663.2997 40557.9861 56151.2591
#>          Mature
#> [1,]   607.0129
#> [2,] 59611.1041
#> 
#> $`12`
#>          Zygote   Quadrant   Globular      Heart    Torpedo       Bent
#> [1,]   604.2214   569.8133   554.2327   569.9091   543.0326   532.1237
#> [2,] 65504.4362 64548.6717 68522.0261 65165.0830 59914.2792 64947.7257
#>          Mature
#> [1,]   563.0654
#> [2,] 68435.7395
#>